SQL Introduction – 6
DML (Data Manipulation Language)

The IN Operator
The IN operator allows you to specify multiple values in a WHERE clause.
SQL IN Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name IN (value1,value2,...);
Example
SELECT * FROM Customers
WHERE City IN ('Paris','London');
The SQL BETWEEN Operator
The BETWEEN operator selects values within a range. The values can be numbers, text, or dates.
SQL BETWEEN Syntax
SELECT column_name(s)
FROM table_name
WHERE column_name BETWEEN value1 AND value2;
Below is a selection from the "Products" table:
	ProductID
	ProductName
	SupplierID
	CategoryID
	Unit
	Price

	1
	Chais
	1
	1
	10 boxes x 20 bags
	18

	2
	Chang
	1
	1
	24 - 12 oz bottles
	19

	3
	Aniseed Syrup
	1
	2
	12 - 550 ml bottles
	10

	4
	Chef Anton's Cajun Seasoning
	1
	2
	48 - 6 oz jars
	22

	5
	Chef Anton's Gumbo Mix
	1
	2
	36 boxes
	21.35



The following SQL statement selects all products with a price BETWEEN 10 and 20:
Example
SELECT * FROM Products
WHERE Price BETWEEN 10 AND 20;
NOT BETWEEN Operator Example
To display the products outside the range of the previous example, use NOT BETWEEN:
Example
SELECT * FROM Products
WHERE Price NOT BETWEEN 10 AND 20;
BETWEEN Operator with IN Example
The following SQL statement selects all products with a price BETWEEN 10 and 20, but products with a CategoryID of 1,2, or 3 should not be displayed:
Example
SELECT * FROM Products
WHERE (Price BETWEEN 10 AND 20)
AND NOT CategoryID IN (1,2,3);
BETWEEN Operator with Text Value Example
The following SQL statement selects all products with a ProductName beginning with any of the letter BETWEEN 'C' and 'M':
Example
SELECT * FROM Products
WHERE ProductName BETWEEN 'C' AND 'M';
NOT BETWEEN Operator with Text Value Example
The following SQL statement selects all products with a ProductName beginning with any of the letter NOT BETWEEN 'C' and 'M':
Example
SELECT * FROM Products
WHERE ProductName NOT BETWEEN 'C' AND 'M';

Sample Table
Below is a selection from the "Orders" table:
	OrderID
	CustomerID
	EmployeeID
	OrderDate
	ShipperID

	10248
	90
	5
	7/4/1996
	3

	10249
	81
	6
	7/5/1996
	1

	10250
	34
	4
	7/8/1996
	2

	10251
	84
	3
	7/9/1996
	1

	10252
	76
	4
	7/10/1996
	2




BETWEEN Operator with Date Value Example
The following SQL statement selects all orders with an OrderDate BETWEEN '04-July-1996' and '09-July-1996':
Example
SELECT * FROM Orders
WHERE OrderDate BETWEEN #07/04/1996# AND #07/09/1996#;
SQL Aliases
SQL aliases are used to give a database table, or a column in a table, a temporary name.
Basically aliases are created to make column names more readable.
SQL Alias Syntax for Columns
SELECT column_name AS alias_name
FROM table_name;
SQL Alias Syntax for Tables
SELECT column_name(s)
FROM table_name AS alias_name;

Alias Example for Table Columns
The following SQL statement specifies two aliases, one for the CustomerName column and one for the ContactName column. Tip: It require double quotation marks or square brackets if the column name contains spaces:
Example
SELECT CustomerName AS Customer, ContactName AS [Contact Person]
FROM Customers;
In the following SQL statement we combine four columns (Address, City, PostalCode, and Country) and create an alias named "Address":
[bookmark: _GoBack]SELECT CustomerName, CONCAT(Address,', ',City,', ',PostalCode,', ',Country) AS Address
FROM Customers;
Aliases can be useful when:
· There are more than one table involved in a query
· Functions are used in the query
· Column names are big or not very readable
· Two or more columns are combined together



